Applied Probability Trust (October 17, 2014) GAUSSIAN RANDOM PARTICLES WITH FLEXIBLE HAUSDORFF DIMENSION

نویسندگان

  • LINDA V. HANSEN
  • THORDIS L. THORARINSDOTTIR
چکیده

Gaussian particles provide a flexible framework for modelling and simulating three-dimensional star-shaped random sets. In our framework, the radial function of the particle arises from a kernel smoothing, and is associated with an isotropic random field on the sphere. If the kernel is a von Mises–Fisher density, or uniform on a spherical cap, the correlation function of the associated random field admits a closed form expression. The Hausdorff dimension of the surface of the Gaussian particle reflects the decay of the correlation function at the origin, as quantified by the fractal index. Under power kernels we obtain particles with boundaries of any Hausdorff dimension between 2 and 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling and simulating star-shaped random sets

Lévy particles provide a flexible framework for modelling and simulating threedimensional star-shaped random sets. The radial function of a Lévy particle arises from a kernel smoothing of a Lévy basis, and is associated with an isotropic random field on the sphere. If the kernel is proportional to a von Mises–Fisher density, or uniform on a spherical cap, the correlation function of the associa...

متن کامل

Gaussian Limit for Determinantal Random Point Fields by Alexander Soshnikov

We prove that, under fairly general conditions, a properly rescaled de-terminantal random point field converges to a generalized Gaussian random process. 1. Introduction and formulation of results. Let E be a locally compact Hausdorff space satisfying the second axiom of countability, B—σ-algebra of Borel subsets and µ a σ-finite measure on (E, B), such that µ(K) < ∞ for any compact K ⊂ E. We d...

متن کامل

Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of Anisotropic Gaussian Random Fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in R defined by X(t) = ( X1(t), . . . , Xd(t) ) , where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under certain general conditions on X0, we study the hitting probabilities of X and determine the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ R is a non-random Borel set. The class of G...

متن کامل

Effectively closed sets of measures and randomness

We show that if a real x ∈ 2 is strongly Hausdorff Hh-random, where h is a dimension function corresponding to a convex order, then it is also random for a continuous probability measure μ such that the μ-measure of the basic open cylinders shrinks according to h. The proof uses a new method to construct measures, based on effective (partial) continuous transformations and a basis theorem for Π...

متن کامل

Fractal Measures of the Sets Associated to Gaussian Random Fields

This paper summarizes recent results about the Hausdorff measure of the image, graph and level sets of Gaussian random fields, the packing dimension and packing measure of the image of fractional Brownian motion, the local times and multiple points of Gaussian random fields. Some open problems are also pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014